Searchable name

Not encoding Interface
(ShapeFactory ShapeFactorylmp)

Class : nouns , not be a verb
Method : to verb... \ 2 Meaningful Names

Rename and rename

Negative are harder
to understand
than positives

Missleading, nonLocal and dishonest

4 Comments

Safari Enable Book Online

There is great power in details

Take the time to go fast

Read 10 / write 1 : you write a story

1 Introduction J -

Prefer refactoging than comment /-

Single formating style for a tean
Variable Concept close, \ 5 Formatting

Dependent Function \ Vvertically cIoseJ

Exception rather than return codes

Begin by Try-Catch-Finally and extract method

Checked exception is an OCP violation,
use unchecked exceptions

7 Error Handling

Function do one thing and do it wel

Same abstract level

Boy scout rule : Leave the campground cleaner
than you found it

Very Small

Do one thing, Same abstract level
do it well,
do it only

ﬂ DoSomething or answerSomething not bot|

Reading top to bottom

/Switch, only in factory, never repeated,

[SRP : Single Responsability principe (more than one reason to change it

Provide context with exceptior

Define Exception in term of caller's needs

Don't return null (return Collections.emptyList(

Don't pass null (Not ideal solution |

Learning test for third-party code

Encapsulate to meet the need \8 Boundaries

Fiche de lecture :
"Clean Code

a Handbook of
Agile Software

Using code that does not yet exist with interfacej

Keep test clean and readable because test keep code flexible

One Assert per test, single concept per test\9 Unit Tests

Craftmanship"
Auteur : Robert C. Martin

3 F““CtiO“SJF OCP : Open close principe (Must change whenever new type added)

No argument best, one, two, three, four too muckt

Don't transform argument, transformation should appear as return value
Arguments

Flag argument ugly

Wrapped argument in class

Prefer report.AppendFooter() than public void appendFooter(String report)

Prefer exception to returning error Codes (Extract body of try in method,

Law of Demeter (Hide data, expose operations)

Train Wrecks (Chains of call)

6 Object and Data Structures Object make it easy to add new kinds of object,

F.I.R.S.T (Fast, Independent, Repeatable, Self-Validating, Timely)

Factories

10C

—\ Dependency Injection
JNDI lookup /~

Separate startup
(construct, wire objects)

EJB2 did not separate

- - 11 Systems
concerns adequately from runtime logic Y

Proxies (CGLIB, ASM, Javassist)
AOP

Use simplest thing that can possibly work

Keep your concurency related code separate

SRP\
Encapsulate, limit shared data, \

attempt to partition data into subset
than can be operate on by independant threads.
13 Concurrency

Keep synchronized section small

hard to add new behaviors to existing object

Data structure make easy to add new behavior
but hard to add new data structures to existing function:

Small and SRP (Single Responsability Principle(one responsibility one reason to change)
Short description in about 25 words

Support OCP and SRP make class open for extension

organizing for change/, Minimizing coupling with interface make

10 Classes test easy, code flexible, promote reuse
\ and adhere to DIP (Dependency Inversion Principle)

Make function protected for test it

Cohesion (each method manipulate one or more instance variable)
When class lose cohesion, split.

According to Kent -> design simple if (Runs all the test,

12 Emergence - Contains no duplication, Expressive, Minimizes number of classes and methods

It s not enought for code to worlk

Bad schedule can be redone, bad requirement can be redifined,
14 Sucessive refinement bad team dynamics can be repaired, bad code is very expensive to clean.

Know your library (Thread safe, executor...) /

Do not ignore system failuress as one—offsj

Think about shutdown early/

Run with more thread than processors on different platforms

k (breaking dependencies is hard) Keeping code is relatively easy.

Bad code dominate your destiny

15 JUnit Internals (Refactoring instance)

16 Refactoring SerialDate (Refactoring instance)

= 17 Smell and Heuristics

